
Issue #3 October 2016

zxzine

zxzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

ZXzine is published as a service
to the Sinclair ZX81 community.
Writers are invited to submit
articles for publication. Readers
are invited to submit article
ideas.

Created using Open
Source Tools:

 OpenOffice
 Scribus
 Gimp
 SZ81
 EightyOne

Copyright 2015
Timothy Swenson

Creative Commons License
 Attribution
 NonCommercial
 ShareAlike

You are free:

 To copy, distribute,
display, and perform
the work.

 To make derivitive
works.

 To redistribute the
work.

table of contents

Editorial 1

Home Computer Crash of 198385
.......................... 1

Typing in Assembly 2

Solving a Maze with Cellular Automata
.......................... 3

ZX81 in Science 4

Circle 5

B1 Bomber for ZX81 6

Page 1

Editorial

Looking at the last issue of ZXzine, I was surprised
to notice that it has been a year since the last issue.
I've had a number of other projects that have been
keeping me from working on the ZX81. I guess I
did say that I would get out a new issue when I had
enough material. I hope it does not take as long for
the next issue.

Home Computer Crash of 198385

There a lot of discussion about the Video Game
crash of 1983 (which covers 1983 to 1985) in the
United States, with a little discussion of how home
computers were involved. Not being into video
games at the time, I only experienced the crash
through the home computers, especially since it
caused Timex Computer Company to leave the
market. It also left Sinclair with a notsogood
reputation in the United States.

In the crash, a lot of the press went to the fight
between Texas Instruments with the TI99/4A and
Commodore with
the VIC20 and
C64. Both the VIC
20 and C64 had
fairly large profit
margins, but the TI
99/4A did not, so
with Texas
Instruments trying
to complete in price
with Commodore,
left Texas
Instruments loosing
money.

In 1981, the
computers on the market were from Radio Shack,
Atari, Commodore, Texas Instruments, and Sinclair.
In 1982, the C64 was introduced, with lots of
capabilities, but pricey at $595. It has similar
capabilities as the 48K ZX Spectrum. Both did
rather well as games machines.

In 1983, a bunch more computers hit the market.
There was the Coleco Adam, Spectravideo SV318,
and two lower priced systems, the Tandy MC10

(with single keyword entry like Sinclair) and the
Mattel Aquarius, seemly aimed at the preteen set.
Late in 1983, the T/S 2068 was introduced, a full
year and a half after the Spectrum. Hardly any of
the system introduced in 1983 really got any share
of the market and in less than a year, almost all of
them were discontinued. The T/S 2068 was on the
market for 4 months before Timex quit. The
Aquarius was on the market from June til October.

As computers sat in the market, their priced
dropped, and as new models came out the prices
dropped even more. The ZX81 hit the market at
$150, the lowest price at the time. The VIC20 was
selling for $300 at the same time. When the T/S
1000 came out in July of 1982, the price was
dropped to $100. In January of 1983, the T/S 1000
was down to $89, while the VIC20 was dropped to
$179 (since the C64 was already out). Texas
Instruments tried to stay in the market by keeping
with the price of the VIC20 and reduced itself from
a high of $525 in late 1981 to $150 in Feb. 1983. In
the summer of 1983, the T/S 1000 was down to $40
and the VIC20 was down to $99.

As the price of the
more advanced
models, like the
C64 and the later
Atari series,
dropped, the price
of the earlier
system came down
even more. With
no color or sound,
with a very small
size, the T/S 1000
was getting the
worst treatment.
The T/S 1000 was

sold mostly at the same retailers that carried Timex
watches, like Longs Drugs, Payless Drugs, etc. A
few electronic stores carried them, but major
retailers like Toys R Us, did not.

Commodore offered a $100 rebate for competitive
trade in on any other video game system or home
computer. There were even mailorder dealers that
would sell a T/S 1000 for $10, along with the C64,
so that the buyer could send in the T/S 1000 to use
the rebate and save $90.

Page 2

At this point the T/S 1000 was in firesale at all of
the retailers, and they did offer the system as low as
$10 and $10 for the 16K memory expansion. With
that low a price, the general consumer was not
thinking of the T/S 1000 as a computer but more as
a toy. It was not unusual to ask someone if they
owned a computer and here them say, "No, I don't
have a computer, but I do have this T/S 1000."

Typing in Assembly

One of the key examples of using ROM routines in
ZX81 assembly language is getting input from the
keyboard and converting it to a character. One of
the simplest uses for getting this input is to create a
software typewriter, meaning that any character that

they user hits on the keyboard is written to the
screen, sort of like a typewriter.

The simplest example is type1.asm. In this
example, the keyboard is scanned, then converted to
a character, which is printed to the screen. Simple,
but when run, its main flaw is obvious to see. The
scan is much faster than the human finger, so a
single depress of a key can result in 8 to 10
characters being printed. If the key is depressed
very quickly, then only 34 characters are printed.

The next example, type2.asm, a delay routine is put
in place to slow down the scan so that only a single
character is hit. The problem is that the user can
not speed up their typing, but only go at a certain

START: LD A,255

LD (count),A ; Set count to 255

LD A,0

LD (lstchr),A ; load lastchar with 0

WAIT: CALL KSCAN ; get a key from the keyboard

LD B,H

LD C,L

LD D,C

INC D

JP Z, START ; if no key pressed, then loop, and reset lastchar

CALL FINDCHAR ; Translate keyboard result to character

LD A,(HL) ; Put results into reg A

LD HL,lstchr ; put address of last char into HL

CP (HL) ; is result same as last character?

JP Z,REPP ; How many times have we seen this character?

CP $76 ; is result a newline?

JP Z,ENDD ; then exit

CALL PRINT ; Print character

LD (lstchr),A ; load LastChar with current character

JP WAIT

REPP: LD A,(count) ; load A with count

DEC A ; dec count

LD (count),A ; store current count in count

JP Z,START ; If count has counted down to 0 then treat as new character

JP WAIT ; Back to wait for a new character

ENDD:

RET

lstchr:

DB 00

count:

DB 00

type4.asm

Page 3

rate. Plus, the delay loop is a waste of compute
cycles.

The third example, type3,asm, is a little smarter and
based on the idea of a state machine. Simply put,
the routine will scan the keyboard, convert it to a
character and then see if that character is the same
as the last character that was scanned. The first
time through the routine, if the key A is hit, then the
A character is returned and printed. The A character
is stored in the lastchar variable location. When the
scan comes round again, if it sees another A, it just
ignores it and loops again. Only when no key is
scanned will the value of lastchar be reset to 0.

When the user presses the key, this is sensed, the
letter is printed and any further scans of the same
key are ignored, until the user removed the finger
from the key. This removal is noted and lastchar is
reset, ready for the next key to be pressed.

The fourth example, type4.asm, takes the third
example further. In the third example, there is no
key repeat. This means that if the key is held down,
only one letter will be printed to the screen, no
matter how long the key is pressed. The normal
keyboard behavior is to have a key repeat after
holding it down for half a second or so. This allows
for single key entry when hitting a key and
releasing, but when the key is held, the key is then
repeated.

In the fourth example, there is a count of how many
times the current key has been seen. Once seen for
X times, it is assumed that the user is holding the
key down on purpose and then a key reset is done
allowing for the key to be printed again. For both
the "last character" and the key "count", a memory
location is used to hold the values and is basically
treated like a variable.

Solving a Maze with Cellular Automata

Past algorithms for solving mazes were brute force
approaches to solve the maze just like a mouse. By
recursively searching all possible paths the solution
will be eventually found. This takes time and lots
of memory for stack space. Basem Nayfeh used
Cellular Automata to solve the problem with no
extra extra memory needed and in a relatively short
time.

Given a maze
that is stored in
an array, walls
are stored as a
cell with a value
of 1. The free
space between
the walls are
cells with a
value of 0.
Each location
(cell) in a maze

has four directions, like the 4 cardinal directions,
East, West, North and South. This means that each
cell has a neighborhood of 4 other cells.

Bayeh defines a
number of rules
for each cell:

1. If I am a free
cell and I'm
surrounded by 3
or 4 wall cells,
then I will
become a wall
cell.
2. If I am a wall

cell, then I will always remain a wall cell.
3. A free cell surrounded by less than 3 wall cells,
remains a free cell.

The last two rules are really not needed as you only
need the rule
that defines the
changes in the
value of a cell.

For those that
know Cellular
Automata, we
have the four
major
components of
any cellular

automata, the dimension of cells (in this case two
dimensions), the state values (1 and 0), the
neighborhood, and the rules.

Page 4

Now the algorithm goes through the array of cells,
looking at each cell and the number of neighbors
that are wall cells (having a value of 1). When
looking at a maze, a number of parts of the maze
are dead ends. These dead ends have walls on three
sides and one open direction, the one that you came
in on. These dead ends will slowly shorten as the
dead end is converted to a wall cell. Over time the

different dead
ends will
decrease and
keep decreasing
until they get to
the point where
they are gone.
The only route
left through the
maze will be the
solution.

The time of the solution is only dependent on the
size of the maze and a worse case calculation of
what the longest dead end might be. The more
complex the maze, having the most dead ends,
would be solved faster than one with a few long
dead ends.

This implementation of the algorithm shows the
maze on each iteration, showing the user how the
algorithm works.

ZX81 in Science

When the ZX81 hit the market it was selling for
$150 and $100 for the extra 16K. The previous
systems on the market were the Apple II selling for
$1,350, the Tandy Model 1 was $849 for 16K, the
Tandy Model III was $999 for 16K. The
Commodore Vic20 was selling for $299 with
5K.The Atari 400 with 16K was selling for $399.
Both the Vic and the Atari needed special cassette
recorders selling for between $75 and $90. For
those in University, these prices can be rather steep.
A 10year old used small car could be purchased for
less than $700.

The appeal of the ZX81 for use in the sciences in
University is obvious. It is computer with a builtin
language that could be purchased for a reasonable
sum. There was no trying to get computer time

from the local large systems. The ZX81 could have
hardware expansions added cheaply, something that
could not be done with the "real" computers in the
University.

There were a number of papers submitted to
scientific journals using the ZX81 for serious
scientific work.

One early paper, published in 1982, is entitled:
"Using the Sinclair ZX81 Microcomputer in the
Biochemistry Laboratory", by A. G. Booth and A.
Dawson of the University of Leeds. The idea of
using the ZX81 was based on a book published in
1980 on using pocket programmable calculators in
biochemistry. The paper provides two example
programs, one on Scatchard Plot and the other on
Kinetic analysis.

Another one published in 1982 is "An inexpensive
computer and interface for research in the
behavioral sciences", by Richard Nicholls and
Randall Potter from Clarion State College in
Pennsylvania. The paper describes using a ZX81
and a ByteBack BB1 control model for
controlling a Skinner box, which has a pellet feeder
for rewarding an animal subject. They compared
the whole cost of a ZX81 system vs other
microcontrollerbased control systems and found
the ZX81 to be a lower cost solution.

A later paper is entitled "A Photoelectric Data
Reduction Program for the Sinclair ZX81
Computer" written by Martin West of England,
while a visiting student at the Lowell Observatory
in the U.S. He mentions the cost of the ZX81 with
16K being only $150, so this was after the first
price reduction. The description of the program is
to "reduce pulsecount photometric data to the
UBW system, optionally calculates extinction and
transformation coefficients and zeropoint terms."
The article details the math behind the calculations
used in the program and then includes the code of
the program. Obviously the program was meant to
be used at the Observatory for professional
astronomy.

Another paper is "A potentiometric analyser based
on the ZX81 microcomputer" by Batson, Moody
and Thomas from the Applied Chemistry

circle.bas

Implementation of Bresenham's

Circle Algorithm

let x0 = 30

let y0 = 20

let rad = 10

gosub @circle

stop

@circle:

let x = rad

let y = 0

let err = 1 x

@cirloop:

plot x0 + x,y0 + y

plot x0 x,y0 + y

plot x0 + x,y0 y

plot x0 x,y0 y

plot x0 + y,y0 + x

plot x0 y,y0 + x

plot x0 + y,y0 x

plot x0 y,y0 x

let y = y + 1

if err < 0 then goto @jump1

if err >= 0 then goto @jump2

goto @jump3

@jump1:

let err = err + 2*y+1

goto @jump3

@jump2:

let x = x 1

let err = err + 2*(yx+1)

@jump3:

if x >= y then goto @cirloop

return

Page 5

Department of the University of Wales. The ZX81
is used to control a "titration unit" through a parallel
bus. A good chunk of the article talks about the
design of an analog to digital device. They also
describe the software needed to control the
hardware attached to the ZX81.

Besides the papers, there is also the book "The
ZX81 in science teaching". Published in 1984,
toward the heyday of the ZX81, the book has two
main topics that apply directly to science,
"Computation and mathematical modeling" and
"Analogue interfacing". A lot of the book discusses
how to do the analog interfacing, including writing
machine code and extending the ZX81. It also
comes with a number example programs like
"Acceleration Tutor", "Fast Timer", "Frequence
Metar", Digital Voltmeter", "Radioactive Display",
"Wave Motion", etc. Given how late the book came
out, I don't know if it was very successful in getting
the ZX81 into classrooms. The book authors are
Bob Sparks (University of Sterling) and Leon Firth
(Paisley College of Technology). My copy of the
book actually came from the Paisley College of
Technology as a discarded library book.

Circle

In the last issue the Bresenham algorithm was
discussed for drawing a line. The next graphics
primitive is drawing a circle. As luck would have
it. Bresenham was also involved with optimizing
the drawing of a circle. The algorithm is also
known as the Midpoint circle algorithm.

What seems the most obvious way to draw a circle
is to calculate the location of a point based on the
radius
from the
center of
a circle,
then using
Sin and
Cos
functions
based on
the
parametri
c equation for a circle. This method, despite being
mathematically sound and what is taught in math
class, is a fairly compute intensive algorithm.

Page 6

The Besenham algorithm uses only integer math
with addition and multiplication, making it a much
faster algorithm. The downside is that it does not
draw a circle like the second hand sweeping around
the circle of a clock. It starts with 4 points of the
circle and fills in the gap between the 4 points.

B1 Bomber for ZX81

Avalon Hill Game Company was a major producer
of board games in the United States. They did not
do simple family games, but more advance adult
oriented games, and they were most well known for
doing wargames, like Squad Leader, Panzer Blitz,
Jutland, etc.

In 1980, Avalon Hill started looking into doing
computer games, by creating a "Microcomputer
Games, Inc." division, looking to convert some of
their board games to computer games. One of the
first games was "B1 Nuclear Bomber", first
released for the Apple II. Later it came out for the
TRS80, Atari 400/800, CP/M, TI99/4A, and MS
DOS. This is all well documented in Wikipedia,
but what is not mentioned is that it also came out
for the ZX81 and the T/S 1000. The January 1985
Avalon Hill Games and Parts Price List has a large
table showing their computer games and all of the
different systems that they are available for. One
column is labeled "Timex/Sinclair" and it can safely
assumed that they are referring to the T/S 1000 and
not the T/S 2068. The only item listed in the
"Timex/Sinclair" column is "B1 Nuclear Bomber".
It is game item 4003 and comes with cassettes for
the T/S 1000, the TRS80 and the TI99/4A. The
cost is listed as $16, which made it one of the
cheapest computer game from Avalon Hill.

The early versions of the games was text only and
the reviews were actually pretty horrible. The game
tied for eighth place in a "Dog of the Year" award
from the magazine Softline. I have seen the game
on a number of abandonware sites, but I have yet to
find the ZX81 version of the game.

DOS version of B1 Bomber

Atari version of B1 Bomber

